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Fracture of a Fiber Composite under TensionFracture of a Fiber Composite under Tension
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Motivation and ApproachMotivation and Approach

Little information about deformation and constitutive behavior of 
materials at multiple length scales.

Need to link experimental data with rigorous micromechanics 
modeling.

Approach:  Use X-ray microdiffraction to investigate deformation 
in materials and complement it with modeling.

Critical issues:
Need for model specimens

“High selectivity” of diffraction

Only elastic lattice strains are measured with diffraction

Lack of “realistic” constitutive laws to calculate stress and interpret 
diffraction data



Advantages of XRDAdvantages of XRD
Non-destructive.

Ability to distinguish different 
phases.

Can measure elastic strain and 
texture.

Simultaneous strain and 
imaging capability.

Multi-scale: nm to cm.

Deep penetration.

In-situ experiment capability.

⇒ Determination of in-situ
constitutive behavior

Bragg’s law:
λ = 2dsinθ

Differences in lattice spacing 
⇒ Elastic lattice strain
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High Energy 2-D XRD Experimental Setup 

2θ
r

Bragg’s Law:
λ = 2 d sin θ

Advanced Photon Source, Argonne National Lab.
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Critical Issues with High Energy 2-D XRD:

• Deep penetration

• Complete Debye rings captured

• 2-D strain tensor 

• Small θ values (i.e., high strain error):

Sensitive to displacement error

Need to employ internal standard



Model Composite: TiModel Composite: Ti--6Al6Al--4V / SiC (SCS4V / SiC (SCS--6)6)

 

Ti 

SiC 

Laminar composite:  Ideal for model comparison
140 µm in diameter fibers; 240 µm average center-to-
center distance
200 µm thick matrix
Data collected with a digital image plate
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Uniaxial tensile testing
Damage evolution study 
using XRD (65 keV)
Complete penetration
90 x 90 µm2 spot size
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Multi-Fiber Deformation Model*

Infinitely large 
number of fibers

 
Fiber  
Breaks

Elastic 
Fibers

Regions of 
localized shear

 
Matrix 
Breaks

*  I.J. Beyerlein and C. M. Landis, 
Mechanics of Materials, 1999; 31: 331. 

Shear lag model for 22--DD
fiberfiber composites

Accounts for matrix 
sustaining elastic tensile 
and shear stresses (first 
shear lag model to do so)

Allows for multiple fiber and 
matrix breaks

Computationally faster for 
many breaks

Assumes elastic
deformation only



Matrix Stiffness Shear Lag (MSSL) Model Predictions
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Location of Diffracting Grains

Ti grain size  ~29 µm:
Few diffracting grains.

SiC grain size ~0.2 µm:
Continuous grain map.

Use of full Debye rings to 
obtain more matrix data.
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Finite Element Predictions Finite Element Predictions 

The predicted axial strains are ideal for 
strains averaged by XRD.
Measured thermal residual stresses 
(axial):

−740 MPa in the fibers 
+350 MPa in the matrix

Axial (ε11)

Ti-SiC
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J. C. Hanan, E. Üstündag et al, Metall. Mater. Trans. 33A, 3839-3845 (2002). 



Unloading Strains in FibersFibers Compared to the MSSL Model

Left Side of the Damage Zone:
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Good fit with ‘intact matrix’ case.

Unloading strains were used due to plasticity in matrix.

Right hand side data suggests interface debonding.

Ti-SiC

J. C. Hanan, E. Üstündag et al, Acta Mater. 51 [14], 4237-4248 (2003). 



Unloading Strains in the Matrix Compared to the MSSL Model

Better fit with ‘intact matrix’ case.

ρ = 0.290 appears to be a more realistic value.

Matrix data comes from few grains.
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Matrix Strains Using Image Plate
Axial Strain Map

Shear Strain Map

Multi-axis strain data

Significant strain concentrations in 
matrix

TransverseTransverse Strain Map
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Transverse Thermal Residual Strain from FEM 
Ti-SiC

Midplane

Surface
Tension over 
the fibers.

Compression
between fibers.
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Change in Matrix Axial Residual Strain due to 
Loading

The compressive 
regions identify 
plastic
deformation 
while loading the 
composite

D E F G H I J
-8

-6

-4

-2

0

2

4

6

8

Fiber Label

Fi
be

r A
xi

al
 P

os
iti

on

-3500

-3100

-2700

-2300

-1900

-1500

-1100

-700

-300

0

Elastic Axial
Strain (10-6)

Hole

σ

t

Ti-SiC



Micromechanics of Composites:  Conclusions

• High energy XRD allows rigorous validation of 
advanced micromechanics models.

• Detailed stress/strain and structure data can be 
collected at the microstructure scale.

• Possibilities now exist for extensive studies under 
various loading conditions.

• Composite field will benefit tremendously from 
combined diffraction and imaging capabilities.



Constitutive Behavior of Ferroelectric Materials

O
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• Poling in large electric fields aligns crystallite 
polarizations through a process called 
“ferroelectric switching”.

• Applied stress causes de-poling and 90°
domain switching.

• Fundamental understanding of the details of 
domain micromechanics is crucial for 
accurate modeling of ferroelectrics.
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Self-Consistent Modeling of Ferroelectrics

• Domain switching within a single crystal (grain).
• Each of M (=6) variants can transform into any of the remaining M-1 (=5) variants: 

total of 30 transformations (90° and 180 ° switches).
• Domain wall motion is dissipative (similar to dislocation motion).
• Stress (σij) and electric field (Ei) are uniform in the crystal.
• There is no hardening.
• Dislocation plasticity is neglected.

Huber, J.E., Fleck, N.A., Landis, C.M. and McMeeking, R.M., J. Mech. & Phys. Sol., 47 (1999) 1663-1697. 



Constitutive Behavior of Polycrystalline Pb(Zr,Ti)O3
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Studied electromechanical response of polycrystalline Pb(Zr,Ti)O3

Employed neutron diffraction and high energy XRD
Diffraction yields hkl dependent strains and texture data, information 
crucial for modeling



Neutron Diffraction:  Lattice Strain Evolution in
Two Phase Pb(Zr,Ti)O3*
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* R.C. Rogan, E. Üstündag, B. Clausen, M.R. Daymond, J. Appl. Phys. 93[7], 4104-4111 (2003). 



Neutron Diffraction:  Experimental Setup at ISIS

Specimen
Long. detector 

(2 θ = −90º)

Trans. detector
(2 θ = +90º)

Incident Neutron Beam

+90° Detector
Bank

-90° Detector
Bank

Q⊥⏐⏐Q

Compression axis

+90° (left) bank observes transverse sample behavior
−90° (right) bank observes axial sample behavior
Very limited detector coverage and slow data collection



Samples were electrically 
poled under sequentially 
increasing static fields while 
taking X-ray patterns.

Results indicate a severe 
dependence on η and a 
critical coercive field of ~0.3 
kV/mm.
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High Energy XRD at APS Sector 1:   2-D Data
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After poling, samples were 
cycled through positive and 
negative ranges. 

The typical “butterfly” curve 
was observed for each 
azimuthal angle.

By “caking” 36 virtual 
detectors were generated to 
allow a wide coverage of 
reciprocal space.
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High Energy XRD at APS Sector 1:   2-D Data

R.C. Rogan, E. Üstündag, M.R. Daymond and U. Lienert, 
submitted to J. Appl. Phys. (2004). 
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Angular Dependence of Strain Behavior

By defining various “spans” the data may be broken down as a function of angle
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R.C. Rogan, E. Üstündag, M.R. Daymond and U. 
Lienert, submitted to J. Appl. Phys. (2004). 



3-D XRD:  Domains in a Single Grain of Polycrystalline BaTiO3

η
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Diffraction Ring

Analyzed Spots

• Cycled electric field on a pre-
poled BaTiO3

• Monitored evolution of domain 
volume fractions and strain 
within individual grains

• Critical information for 3-D FEM 
of ferroelectrics
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Domain switching occurs at a low field (Ec ~ 0.5 kV/mm)
At higher fields spot separation and rotation increases (3-D lattice strain)



Constitutive Behavior of Ferroelectrics:  Conclusions

• High energy XRD is ideal for micromechanics studies on 
ferroelectrics.

• Fast electromechanical loading allows in-situ
investigation of constitutive response.

• 2-D strain and texture data yield multiaxial information 
about material behavior.

• Development of 3-D XRD capability at APS will add 
mesoscale capability.

• It is possible to perform detailed multiscale, multiaxial 
studies of ferroelectric micromechanics at APS.
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